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Abstract

We examine which information mutual fund investors make use of when they
invest, using a machine learning method. We find that investors mostly consider
fund characteristics including past flows and returns, but hardly respond to stock
characteristics that a fund is holding although they are important to predict fund
performance. Finally, we find that return predictability worsens if we only use the
information that investors primarily consider.

1 Introduction

How investors allocate their capital within the market for mutual funds has been a

long-standing question in financial economics. For a long time, a series of studies have

documented that investor follows a naı̈ve and simplistic return-chasing behavior: in-

vestors’ flows in and out of mutual funds respond to past performance although it is

not guaranteed to be persistent (Chevalier & Ellison, 1997; Hendricks, Patel, & Zeck-

hauser, 1993; Sirri & Tufano, 1998). In contrast, a growing literature argues that the

flow-performance relation is a result of learning behaviors by rational investors. In a

seminal paper, Berk and Green (2004) propose the rational expectation model where

Bayesian agents learn a fund manager’s skills of delivering positive risk-adjusted re-

turns (alphas) using the information of past performance and reallocate their assets

accordingly. According to the learning literature, when evaluating managerial skills,

investors should consider any relevant information that can provide investment op-

portunities to give positive net alphas and either invest or divest the fund based on the

information. Because the aggregate flows in and out of the fund reflect this behavior,

one can infer that factors predicting future flows are important information believed

by investors to give investment opportunities. In the spirit of this rationale, Berk and
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Van Binsbergen (2016) and Barber, Huang, and Odean (2016) use fund flows to infer

which asset pricing models investors take into consideration. However, as Berk and

Van Binsbergen (2016) write, “To that end, the paper leaves as an unanswered ques-

tion whether the unexplained part of flows results because investor investors use a

superior, yet undiscovered risk model, or whether investors use other, non-risk-based

criteria to make investment decision”, few studies have investigated the relationship

between fund flows and a large set of factors. This paper contributes to this literature

by identifying whether potential factors that have been considered to relate to fund

performance also predict fund flows. If a factor predicts fund returns (i.e., it is a use-

ful signal of future performance), but it does not predict fund flows (i.e., it is a signal

unaccounted for by investors), it would suggest that investors are leaving useful in-

formation on the table. Similarly, if a factor predicts fund flows, but does not predict

fund returns, it would be puzzling as to why investors care about such fake signals.

We borrow a rich set of factors and econometric methods from recent literature on

asset pricing. The literature has explored hundreds of potential factors whether they

explain the cross-section of expected stock returns, bringing “Factor Zoo”. However,

as Harvey, Liu, and Zhu (2016) point out, data-snooping bias exists when multiple-

testing the significance of each factor in the high-dimensional problem. Recently,

machine learning methods such as principle components, the least absolute shrink-

age and selection operator (LASSO), and neural networks have been leveraged to

address the problem. (Chen, Pelger, & Zhu, 2023; Feng, Giglio, & Xiu, 2020; Frey-

berger, Neuhierl, & Weber, 2020; Gu, Kelly, & Xiu, 2020; Kozak, Nagel, & Santosh,

2020). These methods are also employed in the mutual fund literature, and multi-

ple studies find that several factors have a significant impact on predicting a mutual

fund’s risk-adjusted returns (DeMiguel, Gil-Bazo, Nogales, & AP Santos, 2021; Kaniel,

Lin, Pelger, & Van Nieuwerburgh, 2022; Li & Rossi, 2020). This finding leads us to our

research question in which investors consider those factors when they invest.

We collect the following mutual fund characteristics: (1) stock characteristics based

on stocks that a fund holds, (2) fund characteristics such as expense ratio, age, past
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flows, and momentum, and (3) family characteristics based on the management com-

pany. The methodology we adopt in this paper is the Boosted Regression Trees (BRT),

which combines regression trees and boosting techniques. BRT has several advantages

compared to the standard statistical method, e.g., the ordinary least squares (OLS).

BRT can estimate the non-linear relation between predictors and response variables

and also consider complex interactions among predictors. In addition, BRT works

well in a high-dimensional problem and has been proven to have a decent predictive

performance in various fields. Finally, the interpretability of the BRT can be easily

achieved since it automatically performs a variable selection and computes a relative

importance measure for each factor.

We start by presenting which factors are important to predict fund flows and risk-

adjusted returns using the relative importance measure. We find that the majority of

the factors that are important to predict fund flows are fund characteristics such as

lagged flows, lagged returns, expense ratio, turnover ratio, and fund age, but the im-

portance of stock characteristics is fairly low. In contrast, most of the stock characteris-

tics are significant in predicting risk-adjusted returns. Consequently, it can be inferred

that investors hardly consider stock characteristics although stock characteristics are

important to predict risk-adjusted returns.

Next, we assess the credibility of our model by computing the out-of-sample R2.

If our model correctly estimates the relationship between the factors and fund flows,

it should forecast out-of-sample future flows with the same factors used in the model.

The averages out-of-sample R2 of the BRT are from 15.11% to 23.43%, whereas those

of the OLS is negative. This result confirms that the BRT can handle over-fitting risks

in a high-dimensional problem and have a more stable predictive performance than

the OLS.

Finally, we examine the fund return predictability of the model when we exclude

some factors that investors do not respond to. We restrict the predictor space to the

factors that are important to predict fund flows from the highest where the sum of the

importance measure is 90%, 75%, and 50%. Then we construct a long-short portfolio
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based on the BRT predicted returns and find that the risk-adjusted return of the long-

short portfolio monotonically falls as the predictor space is restricted.

This paper is organized as follows. Section 2 describes the data, fund flows and

risk-adjusted returns being predicted, and a rich set of factors as predictors. Section

3 presents a pre-analysis using univariate sorts prior to the main analysis using the

BRT. Section 4 introduces our model, BRT method, and how to implement it. Section

5 shows the result of our main analysis, and Section 6 concludes.

2 Data

Our data come from the CRSP Mutual Fund database and Thomson Reuters Mutual

Fund Holdings database. Following the code of Doshi, Elkamhi, and Simutin (2015),

we restrict our sample to domestic actively-managed equity mutual funds using CRSP

funds’ investment objectives code. Specifically, we exclude international, municipal

bonds, bonds and preferred, and index funds. Our monthly data set includes 387,592

observations for a total of 3,156 mutual funds and 1,157 mutual funds by month on

average. Our sample period is from January 1990 to November 2018 since the total net

assets of mutual funds are reported monthly after 1990.

2.1 Fund Flow and Performance

Our main objects to predict with the information set are mutual fund flow and per-

formance. Following van Binsbergen, Kim, and Kim (2021), we measure fund flow F

over a horizon of length T as

F T
it+1 =

AUMit+T − AUMit(1 +Rit+T )

AUMit(1 +Rit+T )
(1)

where AUMit and Rit are the asset under management and gross return of fund i at

the end of month t, respectively. Throughout our analysis, we focus on T = 1, 3, 6, and

12.
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We measure fund performance with two different risk-adjusted returns. The first

measure is the excess return defined as

Rexcess
it+1 = Rit+1 − rft (2)

where rft is the risk-free rate at the end of the month t. The second measure is the

abnormal return relative to the CAPM. To get the abnormal return, we first estimate

factor coefficients over the prior 36 months:

Rexcess
it−35:t = αi +MKTt−35:tβ̂it

where MKTt is the excess return on the market portfolio. Then the abnormal return

relative to the CAPM can be computed as

RCAPM
it+1 = Rexcess

it+1 −MKTtβ̂it (3)

Table 1 provides the summary statistics of our measures of flow and performance.

2.2 Stock, Fund, and Family Characteristics

We compute the stock characteristics of a mutual fund through weighted averages by

the dollar amount of the fund’s holding of stocks. Note that our sample is monthly

frequency, whereas fund holdings data are quarterly frequency. Therefore, we impute

monthly holdings data with the latest available holding data for each month. Stock

characteristics are from Freyberger et al. (2020), covering 61 characteristics. Table 2

shows the characteristics by six categories.

We also construct 25 fund characteristics and 24 family characteristics shown in

Table 3. In the fund momentum, fund 3-factor alpha and 4-factor alpha are the abnor-

mal returns relative to Fama and French (1992) and Carhart (1997), respectively. The

lagged fund flows are computed as equation (1). Following Kaniel et al. (2022), the

fund family is identified by the management company code, and the characteristics
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are weighted by the total net assets of all funds in the family, excluding the fund itself.

Therefore, we have a total of 110 regressors as the information set and standardize

both covariates and predicted variables cross-sectionally.

3 Pre-Analysis: Univariate Sorts

As a preliminary analysis prior to the main analysis, we test whether fund flows can

be significantly predicted based on the value of each characteristic. We sort mutual

funds into deciles based on the value of the characteristics and conduct a t-test of

the fund flow difference between the top decile and bottom decile. Specifically, for

each month t, mutual funds are sorted into deciles based on each value of xit, out of

110 regressors. Then we compute the equal-weighted and value-weighted average of

F T
it+1 for each decile and conduct a t-test of the difference between two extreme deciles

using Newey-West standard errors with 12 lags. Note that this pre-analysis shows a

simple univariate relation between regressors and fund flows as it ignores any non-

linear relation or interaction effects between regressors.

Table 4 shows the t-test results for each of the 110 characteristics. The left panel

shows the equal-weighted averages difference and the right shows the value-weighted

averages difference between top and bottom deciles. Each panel reports the results for

F T
it+1, where T = 1, 3, 6, and 12. For equal and value-weighted flows, past fund flows

are the most significant characteristics that predict 1-month inflows of 5.43% - 8.01%,

where t-statistics are 17.76 - 29.03. The results are similar when predicting fund flows

when T = 3, 6, and 12. Followed by past fund flows, fund momentum is an important

characteristic to predict inflows to the funds, and Fama-French 3-factor momentum is

the most significant among them. Other fund characteristics such as exp ratio, age, and

log real tna deliver outflows to the funds at a significant level. Most stock characteris-

tics are insignificant to predict flows except past returns and rel to high price. Finally,

family characteristics are also important to predict flows, and the direction is similar

to the counterpart of fund characteristics.

6



These results imply that investors mostly respond to the fund and family charac-

teristics but hardly respond to stock characteristics. However, this pre-analysis only

shows univariate sorts, and we need careful multivariate analysis to deeper under-

stand investors’ responses.

4 Method

Investors make use of the information set they have to make an investment decision.

As an econometrician, we do not directly observe which information investors make

use of and only observe aggregate fund flows ex-post. With a large number of char-

acteristics, we then estimate which characteristics are important to predict aggregate

fund flows, i.e., we can infer that investors respond to those characteristics on average

when they invest. Formally, consider the following predictive regression problem:

F T
it+1 = g(Iit) + ϵit+1 (4)

where F T
it+1 denotes a fund flow defined in (1), Iit denotes a set of regressors at month

t, and g(·) is a unknown function to be estimated. A natural candidate of g(·) is a lin-

ear function and is estimated by the ordinary least squares (OLS). However, OLS is

vulnerable to over-fitting when the problem is high-dimensional and cannot consider

complex non-linearities between fund characteristics and flow. To overcome the limi-

tations of OLS, we use Boosted Regression Trees (BRT), similar to Gu et al. (2020) and

Li and Rossi (2020).

4.1 Boosted Regression Trees

BRT is a machine learning algorithm that combines regression trees and boosting tech-

niques to perform regression tasks. Regression trees are a non-parametric supervised

learning method allowing multi-way interactions between covariates. The method

works by recursively partitioning the predictor space into smaller subsets using a tree

7



structure, where each node of the tree represents a split in the data based on a selected

feature and threshold value. The splitting process is based on minimizing the sum of

squared errors between the predicted and actual values of the response variable. This

sequential branching slices the space of predictors into rectangular partitions, and ap-

proximates the unknown function g(·) with the average value of the outcome variable

within each partition. Formally, a regression tree can be defined by

g(x) =
J∑

j=1

wjI(x ∈ Rj) (5)

where Rj, j = 1, ..., J is the subset of the predictor space specified by the j’th node, I(·)

is an indicator function, and wj is the predicted output for that node. We can easily

estimate wj as the average value in each partition Rj :

wj =

∑N
i=1

∑T
t=1 yitI(xit ∈ Rj)∑N

i=1

∑T
t=1 I(xit ∈ Rj)

To find optimal partitioned regions Rj , we need to minimize the following loss:

L((Rj, wj) : j = 1, ..., J) =
J∑

j=1

∑
xit∈Rj

(yit − wj)
2

Due to the discrete tree structure, this loss function is not differentiable and finding the

optimal partitions is NP-complete (Laurent & Rivest, 1976). Therefore, we use a greedy

procedure, in which we iteratively grow the tree one node at a time. The procedure

first considers a partitioning predictor p and a split threshold s, so the partitions are

constructed as

R1(p, s) = {X|Xp ≤ s} and R2(p, s) = {X|Xp > s}

Then we choose p and s by solving

min
p,s

min
w1

∑
xit∈R1(p,s)

(yit − w1)
2 +min

w2

∑
xit∈R2(p,s)

(yit − w2)
2

 ,
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w1 =

∑N
i=1

∑T
t=1 yitI(xit ∈ R1)∑N

i=1

∑T
t=1 I(xit ∈ R1)

and w2 =

∑N
i=1

∑T
t=1 yitI(xit ∈ R2)∑N

i=1

∑T
t=1 I(xit ∈ R2)

, for a given p and s

Given the optimal R1(p, s) and R2(p, s), we repeat the same splitting process for each

of the partitions.

Note that the method performs automatic variable selection since predictors that

are never used to split the predictor space do not affect the performance of the model.

These non-parametric and sequential splits of the predictor space are likely to capture

the non-linear relation between predictors and predicted variables, but over-fitting

can be still problematic because fewer and fewer observations are used as trees grow

further. To address this problem, we use the boosting technique, which is ensembles

of trees.

Boosting is a method of building an ensemble of regression trees, where each subse-

quent tree is trained to correct the errors of the previous one. Suppose T (x; {Rj, wj}Jj=1)

is a regression tree defined in equation (5). Then boosted regression trees are the sum

of regression trees:

gB(x) =
B∑
b=1

Tb(x; {Rb,j, wb,j}Jj=1) (6)

where B is the number of boosting iterations and Tb(x; {Rb,j, wb,j}Jj=1) is the regression

tree in the b-th iteration. Let us define the error after b− 1 boosting iterations:

eit,b−1 = yt − gb−1(xit)

Then the subsequent tree at step b can be estimated by solving

min
{Rb,j ,wb,j}Jj=1

N∑
i=1

T∑
t=1

[
eit,b−1 − Tb(x; {Rb,j, wb,j}Jj=1)

]2
,

wb,j =

∑N
i=1

∑T
t=1 eit,b−1I(xit ∈ Rb,j)∑N

i=1

∑T
t=1 I(xit ∈ Rb,j)

, for a given Rb,j
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4.2 Relative Importance Measure

As we discussed above, the BRT automatically selects characteristics as a tree grows.

Therefore, we can see how important each characteristic is relative to other charac-

teristics by summing up the empirical gains of each node where the characteristic is

selected. Breiman, Friedman, Stone, and Olshen (1984) proposes a relative importance

measure for each predictor variable Xl. For a single regression tree T , the measure is

defined as

Il(T ) =
J−1∑
j=1

GjI(xj = Xl) (7)

where Gj is the reduction in squared empirical error at node j and xj is the regressor

selected at node j. If a regressor is selected more frequently for splitting and the gain

is bigger, the measure is larger. On the other hand, if a regressor is never used for

splitting, the measure is zero. By averaging over the number of boosted trees, we can

get a more reliable importance measure:

Il =
1

B

B∑
b=1

Il(T⌊)

Since the measure shows relative importance, we normalize the relative importance

measure to be the total sum of 1.

4.3 Out-of-Sample R2

If our method well uncovers the relationship between the characteristics and future

flows by estimating the predictive regression model (4), the estimated model should

be able to forecast flows using the same characteristics in the next period. Therefore,

we can check the performance of the method by measuring out-of-sample R2. Suppose

we estimate the equation (4) with the BRT:

F T
it+1 = ĝ(Iit)
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where ĝ(·) is the estimated function by the BRT. Then the model forecasts flows at t+2

using the information at t+ 1:

F̂ T
it+2 = ĝ(Iit+1)

We can calculate the out-of-sample R2 as follows

R2
oos,t+1 = 1−

∑N
i=1

(
F T
it+2 − F̂ T

it+2

)2

∑N
i=1

(
F T
it+2 − F̄ T

it+2

)2 , (8)

As we will use 1-month rolling windows, Roos,t+1 pools prediction errors across mutual

funds at t+1, and we can see how it varies over time. When we estimate the equation

(4) with the OLS, the model hardly forecasts flows, as most of Roos,t+1 are negative

of around -20%. This confirms that the OLS is an inappropriate method when the

predictor space is high-dimensional due to the over-fitting risk.

4.4 Implementation

For the implementation of the BRT model, we mainly follow Li and Rossi (2020)’s one-

month rolling window specification, but we adopt two major modifications to their

method.

First, we set a validation period to find the optimal number of boosting iterations.

Specifically, we estimate the equation (4) by the BRT at each month t, evaluate the

estimated model with the validation period at t + 1 to find the optimal number of

boosting iterations, and finally calculate R2
oos at t + 2. As the number of boosting it-

erations increases, the mean squared error in the training sample usually decreases

since the boosting targets the errors of the previous tree. Therefore, too many boosting

iterations may be exposed to the over-fitting risk. To address this problem, we stop

the boosting iterations when the mean squared error evaluated at the validation sam-

ple stop decreasing. Actually, this modification significantly reduces the number of a

negative R2
oos, whereas simply setting the number of boosting iterations to 100 as in Li

and Rossi (2020) produces many negative R2
oos. We will discuss this more extensively

11



later.

Second, we use the Huber robust objective function instead of the squared loss

function when estimating the BRT model, similar to Gu et al. (2020). The Huber robust

objective function is defined as

LH(T (x)) =
T∑
t=1

H(yt − T (x), ξ),

where

H(x; ξ) =

 x2, if |x| ≤ ξ

2ξ|x| − ξ2, if |x| > ξ

The Huber loss function is well-known in the machine learning literature for produc-

ing more stable predictions than the squared loss function in the presence of outliers.

Since outliers are known to be common in financial returns and characteristics, we

adopt the Huber loss function.

5 Results

5.1 Which Information Matters to Investors

In this section, we start by presenting the relative importance measure when predict-

ing future fund flows. We rank the characteristics from the highest importance to the

lowest and infer that investors make use of the highest- and lowest-ranked character-

istic the most and the least, respectively. Since we estimate the model with one-month

rolling windows, we have relative importance measures for every month in our sam-

ple period. Following Gu et al. (2020), we report the relative importance measure by

averaging across the time. Figure 1 shows the relative importance measure for each

characteristics when predicting F T
it+1 for T = 1, 2, 3, and 12. The result indicates that

the 10 most important predictors are all fund characteristics for all F T
it+1, including past

flows, log real tna, age, turn ratio, and long-term fund momentum. Especially, the im-

portance of flow 1 0 is greater than 10%, and the importance of flow 2 1, and flow 12 2
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is greater or similar to 5% for all F T
it+1. Interestingly, long-term fund momentum turns

out to be more important than short-term fund momentum, which implies that in-

vestors are not myopic but consider the fund’s long-term performance when they de-

cide to invest. The importance of stock characteristics is evenly dispersed around 1%

for all F T
it+1. Among them, the most important stock characteristic is d dgm dsales,

which is in the profitability category. This highlights the importance of multivariate

analysis as we recall that past returns and rel to high price are significant in the univari-

ate sorts. The least important characteristics are family characteristics, which indicates

that investors hardly take the management company of the fund into account. Overall,

fund characteristics including past flows and returns are the most important predic-

tors as expected from previous research (Coval & Stafford, 2007), and stock and family

characteristics are less important predictors.

Next, we estimate the model to predict future fund performance defined in (2)

and (3) and check which characteristics are important. The left plot in Figure 2 and

Figure 3 show the relative importance measures when predicting future excess returns

and abnormal returns. Contrary to the previous result, many stock characteristics

are ranked high in both figures. This result coincides with Li and Rossi (2020) who

find that fund performance is largely exposed to 40-50 stock characteristics. Fund

characteristics such as exp ratio, turn ratio, log real tna, and fund momentum turn are

placed in the middle of stock characteristics, but family characteristics turn out to be

less important.

We conclude that investors mostly respond to fund characteristics, but less con-

sider stock characteristics although they are significant to predict future fund perfor-

mance. We leave identifying the mechanism of the investor’s behavior as a future

study.

5.2 Model Evaluation

The reason why we leverage the BRT to estimate the model is that the OLS usually

misleads the relationship between future flows and predictors due to the over-fitting
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problem in a high-dimensional setting. Then the BRT should be free of the over-fitting

risk to make the results credible. Figure 4 shows the out-of-sample R2 over time for all

F T
it+1. The green line is R2

oos of the BRT with the validation sample to set the optimal

number of boosting iterations, red is of the BRT with setting the number to 100, and

the blue is of the OLS. For all F T
it+1, the majority of R2

oos of the OLS is negative, which

indicates that the over-fitting problem is serious. For 1-month future flow, several R2
oos

of the BRT without the validation is negative, whereas most of R2
oos of the BRT with the

validation is greater than 0. This result implies that too many boosting iterations also

result in the over-fitting problem. For 3,6, and 12-month future flows, both red and

blue lines show a similar pattern where the green is slightly below the red but more

stable with respect to the over-fitting.

Table 5 shows the average, minimum, and maximum of R2
oos, and the proportion

of the negative value across the time for each model. Not surprisingly, the average

of R2
oos of OLS is from -16.94% to -23.38%, and the proportion of the negative value is

all above 80%. Now we focus on the 1-month future flow. The mean of R2
oos of BRT

without validation is 6.23% and the proportion is 22.46% while BRT with validation

shows 15.11% and the proportion drops dramatically to 1.8%. Moreover, the mini-

mum of the former is -31.98%, whereas the latter is only -2.41%. Therefore, using the

validation sample to set the optimal number of boosting iterations helps to address

the over-fitting problem and produce stable predictions for 1-month future flow. The

proportion of negative values also improves for 3,6, and 12-month future flows, but

the averages slightly decrease. This might be because we use the information at t + 1

for validation, and only use the trained model with the information at t to forecast the

value at t + 2. Although there is a disadvantage due to the information loss, stable

predictions without the over-fitting risk should be emphasized for credible results.

5.3 Predicting Fund Returns based on Investor’s Information Set

In this section, we construct a long-short portfolio based on the predicted fund returns

similar to Li and Rossi (2020) and Kaniel et al. (2022), but the predictor space is re-
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stricted to the characteristics that are important to predict 3-month future flow from

the highest where the sum of importance is 90%, 75%, and 50%. The rationale behind

this restriction is to test how important the characteristics investors do not consider

are important to predict future performance. The right plot in Figure 2 and Figure 3 is

the relative importance measure to predict future excess and abnormal returns when

restricting the predictor space to the sum of the measure for 3-month future flow to be

50%. The number of predictors is only 19 out of 110 regressors, and there are only 5

stock characteristics: rel to high price, d ceq, suv, noa, and d dgm dsales.

With the restricted predictor space, we sort funds into deciles based on the pre-

dicted excess and abnormal returns. For each decile, we compute the average of re-

alized excess and abnormal returns with either equal weights or value weights by

the predicted value. We then construct a long-short portfolio by holding the funds

in the top decile and selling the funds in the bottom decile. Table 6 reports the ex-

cess and abnormal returns of the long-short portfolio and their t-statistics computed

using Newey-West standard errors with 12 lags. For both equal- and value-weighted

long-short portfolios, the average of the excess returns monotonically decreases from

0.57-0.58% to 0.46-0.47% as the predictor space is restricted further. The average of the

abnormal returns is not exactly a monotone decrease, but it decreases from 0.5% using

all predictors to 0.46-0.47% using the 19 predictors.

6 Conclusions

In this paper, we shed light on mutual fund investors’ responsiveness to the infor-

mation set by leveraging the machine learning method. We divide the information set

into three groups: (1) stock characteristics, (2) fund characteristics, and (3) family char-

acteristics. We show that important characteristics to predict future flows are mostly

fund characteristics, whereas stock characteristics are far less important even though

they are important to predict future fund performance. If we restrict the predictor

space to the characteristics ranked in order from the highest importance to predict fu-
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ture flows where the sum is 90%, 75%, and 50%, the performance of the long-short

portfolio based on the predicted fund performance decreases monotonically. We also

confirm that the predictability of our model is stable over time, as evidenced by the

out-of-sample R2.

The natural next step for future research is to identify the mechanism of the in-

vestor’s behavior. The possible reason why the investor does not respond to the stock

characteristics might be the costly information acquisition, and the recent advance of

rational inattention literature can help model the investor’s learning behavior. The

other possible strand of future research is about a policy implication of our results. It

might be socially desirable if mutual fund managers disclose the stock characteristics

they hold so that the information is easily accessible to the investor.
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Table 1: Summary statistics of fund flow and performance

Statistic N Mean Median Std.Dev Min 5% 95% Max
Flow 1month 387,174 0.0002 -0.0048 0.0582 -0.4705 -0.0532 0.0636 2.7285
Flow 3month 385,362 0.0043 -0.0160 0.1725 -0.7123 -0.1352 0.1836 13.4980
Flow 6month 381,207 0.0185 -0.0325 0.3822 -0.7162 -0.2368 0.3778 73.5192
Flow 12month 371,774 0.0679 -0.0640 0.8502 -0.7944 -0.3883 0.7984 117.8057
Excess reutrn 387,183 0.0061 0.0100 0.0510 -0.3113 -0.0824 0.0797 0.4026
CAPM alpha 387,183 0.0003 -0.0002 0.0240 -0.2443 -0.0350 0.0367 0.3755

This table reports summary statistics of the fund flows and risk-adjusted returns. The sample period is from 1990/01 to 2018/11
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Table 2: Stock Characteristics by category

Past Returns Value
(1) r1 0 Return 1 month before prediction (32) A2ME Total assets to Size
(2) r6 2 Return from 6 to 2 month before prediction (33) BEME Book to market ratio
(3) r12 2 Return from 12 to 2 month before prediction (34) BEME adj BEME - mean BEME in Fama-French 48 industry
(4) r12 7 Return from 12 to 7 month before prediction (35) C Cash to AT
(5) r36 13 Return from 36 to 13 month before prediction (36) C2D Cash flow to total liabilities

(37) dSO Log change in split-adjusted shares outstanding
Investment (38) Debt2P Total debt to Size

(6) Investment % change in AT (39) E2P Income before extraordinary items to Size
(7) dCEQ % change in BE (40) Free CF Free cash flow to BE
(8) dPI2A Change in PP&E and inventory over lagged AT (41) LDP Trailing 12-months dividens to price
(9) IVC Change in inventory over average AT (42) NOP Net payouts to Size
(10) NOA Net-operating assets over lagged AT (43) O2P Operating payouts to market cap

(44) Q Tobin’s Q
Profitability (45) S2P Sales to price

(11) ATO Sales to lagged net operating assets (46) Sales g Sales growth
(12) CTO Sales to lagged total assets
(13) d(dGM-dSales) d(% change in gross margin and % change in sales) Trading frictions
(14) EPS Earnings per share (47) AT Total assets
(15) IPM Pretax income over sales (48) Beta Correlation x ratio of vols
(16) PCM Sales minus costs of goods sold to sales (49) Beta daily CAPM beta using daily returns
(17) PM OI after depreciation over sales (50) DTO De-trended Turnover - market Turnover
(18) PM adj Profit margin - mean PM in Fama-French 48 industry (51) Idio vol Idio vol of Fama-French 3 factor model
(19) Prof Gross profitability over BE (52) LME Price times shares outstanding
(20) RNA OI after depreciation to lagged net operating assets (53) LME adj Size - mean size in Fama-French 48 industry
(21) ROA Income before extraordinary items to lagged AT (54) Lturnover Last month’s volume to shares outstanding
(22) ROC Size + longterm debt - total assets to cash (55) Rel-to high price Price to 52 week high price
(23) ROE Income before extraordinary items to lagged BE (56) Ret max Maximum daily return
(24) ROIC Return on invested capital (57) Spread Average daily bid-ask spread
(25) S2C Sales to cash (58) Std turnover Standard deviation of daily turnover
(26) SAT Sales to total assets (59) Std volume Standard deviation of daily volume
(27) SAT adj SAT - mean SAT in Fama-French 48 industry (60) SUV Standard unexplained volume

(61) Total vol Standard deviation of daily returns
Intangibles

(28) AOA Absolute value of operating accurals
(29) OL Costs of goods solds + SG&A to total assets
(30) Tan Tangibility
(31) OA Operating accurals

This table report 61 stock characteristics from Freyberger et al. (2020) sorted into six categories.
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Table 3: Fund and family characteristics by category

Fund momentum Fund family characteristics
(1) F r1 0 Fund return 1 month before prediction (1) family ret 1 0
(2) F r2 1 Fund return from 2 to 1 month before prediction (2) family ret 2 1
(3) F r12 2 Fund return from 12 to 2 month before prediction (3) family ret 12 2
(4) F excess r1 0 Fund excess return 1 month before prediction (4) family excess ret 1 0
(5) F excess r2 1 Fund excess return from 2 to 1 month before prediction (5) family excess ret 2 1
(6) F excess r12 2 Fund excess return from 12 to 2 month before prediction (6) family excess ret 12 2
(7) F mar1 0 Fund market-adjusted return 1 month before prediction (7) family MAR 1 0
(8) F mar2 1 Fund market-adjusted return from 2 to 1 month before prediction (8) family MAR 2 1
(9) F mar12 2 Fund market-adjusted return from 12 to 2 month before prediction (9) family MAR 12 2
(10) F capm1 0 Fund CAPM alpha 1 month before prediction (10) family CAPM 1 0
(11) F capm2 1 Fund CAPM alpha from 2 to 1 month before prediction (11) family CAPM 2 1
(12) F capm12 2 Fund CAPM alpha from 12 to 2 month before prediction (12) family CAPM 12 2 Fund-level counter parts weighted by TNA in family
(13) F 3F alpha 1 0 Fund 3-factor alpha 1 month before prediction (13) family 3F alpha 1 0
(14) F 3F alpha 2 1 Fund 3-factor alpha from 2 to 1 month before prediction (14) family 3F alpha 2 1
(15) F 3F alpha 12 2 Fund 3-factor alpha from 12 to 2 month before prediction (15) family 3F alpha 12 2
(16) F 4F alpha 1 0 Fund 4-factor alpha 1 month before prediction (16) family 4F alpha 1 0
(17) F 4F alpha 2 1 Fund 4-factor alpha from 2 to 1 month before prediction (17) family 4F alpha 2 1
(18) F 4F alpha 12 2 Fund 4-factor alpha from 12 to 2 month before prediction (18) family 4F alpha 12 2

(19) family flow 1 0
Fund flow (20) family flow 2 1

(19) Flow 1 0 Fund flow 1 month before prediction (21) family flow 12-2
(20) Flow 2 1 Fund flow from 2 to 1 month before prediction (22) family age
(21) Flow 12 2 Fund flow from 12 to 2 month before prediction (23) family log real tna

(24) family no Number of funds in family
Fund characteristics

(22) Age Fund age
(23) Log real TNA Log of inflation-adjusted total net assets
(24) Exp ratio Fund expense ratio
(25) Turnover ratio Fund turnover ratio

This table shows 25 fund characteristics and 24 family characteristics
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Table 4: Univariate analysis of mutual fund flows

Equal Weighted Value Weighted

Characteristics flow 1month t-stat flow 3month t-stat flow 6month t-stat flow 12month t-stat flow 1month t-stat flow 3month t-stat flow 6month t-stat flow 12month t-stat

exp ratio -0.0043 -3.67 -0.0124 -3.30 -0.0234 -2.84 -0.0455 -2.23 -0.0059 -4.26 -0.0165 -3.80 -0.0322 -3.55 -0.0705 -3.30

turn ratio -0.0029 -1.36 -0.0051 -0.59 -0.0006 -0.03 0.0295 0.36 -0.0023 -0.93 -0.0051 -0.57 -0.0022 -0.09 0.0130 0.22

age -0.0167 -9.16 -0.0562 -6.93 -0.1230 -5.41 -0.2781 -4.99 -0.0161 -7.70 -0.0540 -6.05 -0.1177 -4.76 -0.2667 -4.48

log real tna -0.0032 -2.57 -0.0221 -3.69 -0.0749 -4.13 -0.2594 -4.61 -0.0028 -2.11 -0.0185 -3.60 -0.0648 -4.40 -0.2290 -5.27

flow lag1 0.0602 29.03 0.1873 25.71 0.3668 20.40 0.6974 17.21 0.0801 18.87 0.2484 16.25 0.4974 13.44 0.9688 11.90

flow lag2 lag1 0.0589 27.20 0.1774 23.57 0.3455 19.95 0.6551 17.86 0.0725 17.76 0.2230 15.68 0.4459 12.77 0.8758 11.93

flow lag12 lag2 0.0543 22.17 0.1572 19.68 0.3030 14.26 0.5590 12.21 0.0647 19.09 0.1877 16.53 0.3620 13.01 0.6732 13.02

F ret 1 0 0.0164 12.60 0.0491 11.88 0.1021 11.80 0.2187 10.50 0.0195 11.07 0.0578 10.00 0.1189 9.55 0.2596 7.89

F ret 2 1 0.0219 12.72 0.0674 11.82 0.1419 10.55 0.2933 9.40 0.0266 12.45 0.0822 11.08 0.1674 10.19 0.3596 7.91

F ret 12 2 0.0403 15.70 0.1282 12.52 0.2552 10.49 0.4914 9.97 0.0498 14.40 0.1546 11.12 0.3021 9.48 0.5744 8.69

F excess ret 1 0 0.0164 12.60 0.0491 11.88 0.1021 11.80 0.2187 10.50 0.0195 11.07 0.0578 10.00 0.1189 9.55 0.2596 7.89

F excess ret 2 1 0.0219 12.70 0.0674 11.81 0.1421 10.54 0.2934 9.40 0.0266 12.45 0.0822 11.07 0.1676 10.19 0.3598 7.91

F excess ret 12 2 0.0403 15.70 0.1283 12.50 0.2553 10.50 0.4918 9.97 0.0498 14.40 0.1546 11.12 0.3021 9.48 0.5745 8.69

F MAR 1 0 0.0164 12.60 0.0491 11.88 0.1021 11.80 0.2187 10.50 0.0195 11.07 0.0578 10.00 0.1189 9.55 0.2596 7.89

F MAR 2 1 0.0218 12.59 0.0672 11.79 0.1416 10.47 0.2920 9.31 0.0265 12.37 0.0822 11.08 0.1672 10.08 0.3576 7.79

F MAR 12 2 0.0401 15.47 0.1257 12.44 0.2495 10.60 0.4771 9.78 0.0495 14.40 0.1529 10.89 0.2981 9.25 0.5641 8.49

F CAPM 1 0 0.0170 12.24 0.0518 11.84 0.1065 11.47 0.2230 10.43 0.0202 12.17 0.0618 10.78 0.1299 10.20 0.2791 8.57

F CAPM 2 1 0.0224 13.31 0.0693 12.09 0.1425 11.39 0.2966 10.46 0.0277 12.87 0.0861 10.99 0.1758 10.02 0.3742 8.27

F CAPM 12 2 0.0404 15.75 0.1272 12.80 0.2529 11.25 0.4899 10.06 0.0486 14.13 0.1505 11.72 0.2956 10.32 0.5677 9.22

F 3F alpha 1 0 0.0157 14.64 0.0474 14.75 0.0997 13.22 0.2125 11.44 0.0194 11.51 0.0566 11.13 0.1204 10.68 0.2647 8.59

F 3F alpha 2 1 0.0209 13.89 0.0652 13.38 0.1398 12.43 0.2935 10.68 0.0262 13.35 0.0804 12.10 0.1713 10.94 0.3685 8.58

F 3F alpha 12 2 0.0392 18.14 0.1219 14.36 0.2429 13.11 0.4723 11.41 0.0475 15.95 0.1467 12.85 0.2894 11.63 0.5555 10.58

F 4F alpha 1 0 0.0149 15.51 0.0436 15.33 0.0921 13.96 0.2013 11.59 0.0181 12.41 0.0535 12.10 0.1157 10.73 0.2577 8.44

F 4F alpha 2 1 0.0197 16.23 0.0606 15.34 0.1307 13.32 0.2844 11.46 0.0249 15.02 0.0758 12.69 0.1627 10.77 0.3591 8.29

F 4F alpha 12 2 0.0376 18.18 0.1183 14.08 0.2390 11.81 0.4797 10.83 0.0469 14.96 0.1458 10.65 0.2920 9.81 0.5760 9.43

lme weighted -0.0010 -0.47 -0.0038 -0.40 -0.0086 -0.38 -0.0250 -0.50 -0.0019 -0.81 -0.0070 -0.73 -0.0127 -0.54 -0.0361 -0.68

lturnover weighted 0.0007 0.22 -0.0008 -0.06 -0.0032 -0.09 0.0029 0.04 0.0001 0.03 -0.0033 -0.27 -0.0093 -0.29 -0.0090 -0.13

ldp weighted 0.0014 0.63 0.0076 0.80 0.0160 0.70 0.0304 0.64 0.0019 0.66 0.0089 0.77 0.0217 0.68 0.0442 0.73

beme weighted 0.0012 0.44 0.0079 0.62 0.0213 0.55 0.0571 0.57 0.0004 0.14 0.0076 0.58 0.0198 0.57 0.0493 0.57

at weighted -0.0010 -0.63 -0.0026 -0.37 -0.0040 -0.21 -0.0143 -0.27 -0.0012 -0.64 -0.0048 -0.68 -0.0068 -0.34 -0.0207 -0.43
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c weighted 0.0008 0.28 -0.0005 -0.05 0.0015 0.04 0.0111 0.20 0.0008 0.28 0.0002 0.01 0.0059 0.16 0.0171 0.21

ol weighted 0.0005 0.33 0.0008 0.14 -0.0027 -0.18 -0.0071 -0.19 -0.0001 -0.08 -0.0006 -0.08 -0.0027 -0.14 -0.0071 -0.18

pcm weighted -0.0006 -0.25 -0.0038 -0.36 -0.0084 -0.30 -0.0182 -0.29 -0.0007 -0.27 -0.0032 -0.29 -0.0028 -0.12 -0.0013 -0.02

prof weighted 0.0006 0.37 0.0018 0.30 0.0064 0.36 0.0088 0.14 0.0008 0.42 0.0042 0.61 0.0130 0.66 0.0353 0.49

roe weighted 0.0009 0.45 0.0021 0.24 0.0045 0.18 0.0181 0.33 0.0013 0.62 0.0040 0.42 0.0124 0.42 0.0450 0.62

investment weighted -0.0010 -0.46 -0.0039 -0.40 -0.0103 -0.50 -0.0174 -0.39 -0.0007 -0.30 -0.0044 -0.46 -0.0089 -0.39 -0.0038 -0.08

oa weighted -0.0018 -1.25 -0.0086 -1.84 -0.0221 -1.83 -0.0390 -1.36 -0.0005 -0.26 -0.0031 -0.44 -0.0125 -0.66 -0.0309 -0.88

free cf weighted 0.0007 0.38 0.0023 0.28 0.0049 0.22 0.0123 0.23 0.0017 0.81 0.0081 0.87 0.0216 0.74 0.0617 0.79

noa weighted -0.0011 -0.74 -0.0053 -1.02 -0.0136 -1.29 -0.0201 -0.99 -0.0010 -0.60 -0.0061 -1.06 -0.0113 -0.87 -0.0136 -0.53

roa weighted 0.0001 0.04 -0.0009 -0.13 -0.0012 -0.06 -0.0031 -0.06 0.0009 0.54 0.0033 0.51 0.0100 0.57 0.0310 0.68

debt2p weighted 0.0010 0.44 0.0061 0.67 0.0155 0.59 0.0407 0.62 0.0028 1.03 0.0150 1.20 0.0373 1.07 0.0932 0.99

s2p weighted 0.0016 0.59 0.0076 0.66 0.0154 0.48 0.0392 0.59 0.0006 0.19 0.0058 0.43 0.0129 0.40 0.0292 0.40

d so weighted 0.0002 0.07 -0.0030 -0.27 -0.0051 -0.19 0.0062 0.12 -0.0001 -0.05 -0.0035 -0.33 -0.0035 -0.13 0.0085 0.16

a2me weighted 0.0022 0.84 0.0111 0.95 0.0258 0.71 0.0533 0.62 0.0029 0.97 0.0147 1.08 0.0352 0.92 0.0822 0.85

e2p weighted 0.0019 0.64 0.0082 0.64 0.0125 0.44 0.0282 0.37 0.0040 1.14 0.0162 1.08 0.0355 1.08 0.0822 1.07

eps weighted -0.0007 -0.29 -0.0030 -0.31 -0.0086 -0.31 -0.0202 -0.26 -0.0007 -0.28 -0.0041 -0.40 -0.0103 -0.36 -0.0179 -0.24

o2p weighted 0.0019 0.71 0.0084 0.70 0.0216 0.56 0.0447 0.52 0.0028 0.98 0.0133 1.09 0.0323 1.13 0.0751 1.09

nop weighted 0.0015 0.57 0.0074 0.67 0.0202 0.62 0.0462 0.74 0.0018 0.58 0.0103 0.84 0.0285 0.99 0.0596 0.93

dpi2a weighted 0.0001 0.05 -0.0007 -0.09 -0.0048 -0.25 -0.0113 -0.26 0.0003 0.15 -0.0003 -0.03 -0.0044 -0.21 -0.0138 -0.32

ivc weighted -0.0016 -1.02 -0.0082 -1.56 -0.0243 -1.54 -0.0567 -1.53 -0.0010 -0.70 -0.0055 -1.08 -0.0148 -1.02 -0.0326 -1.09

rna weighted 0.0010 0.62 0.0021 0.31 0.0023 0.14 0.0031 0.08 0.0029 1.84 0.0086 1.37 0.0165 1.08 0.0437 1.08

pm weighted -0.0009 -0.47 -0.0035 -0.43 -0.0059 -0.25 -0.0058 -0.08 -0.0013 -0.67 -0.0039 -0.47 -0.0038 -0.15 0.0122 0.16

ato weighted 0.0006 0.41 0.0006 0.11 -0.0037 -0.27 -0.0162 -0.48 0.0030 2.06 0.0087 1.77 0.0181 1.52 0.0418 1.36

cto weighted 0.0012 0.82 0.0025 0.48 0.0033 0.24 0.0129 0.46 0.0013 0.87 0.0035 0.55 0.0076 0.50 0.0258 0.98

tan weighted -0.0011 -0.54 -0.0040 -0.51 -0.0066 -0.33 -0.0264 -0.52 -0.0018 -0.79 -0.0082 -0.96 -0.0127 -0.50 -0.0255 -0.39

s2c weighted -0.0002 -0.06 0.0007 0.07 0.0002 0.01 0.0051 0.09 -0.0002 -0.09 0.0024 0.23 0.0034 0.13 0.0136 0.24

c2d weighted -0.0001 -0.10 -0.0025 -0.43 -0.0062 -0.40 -0.0070 -0.23 0.0008 0.55 0.0026 0.43 0.0095 0.57 0.0408 1.23

sales g weighted -0.0004 -0.18 -0.0050 -0.57 -0.0103 -0.39 -0.0203 -0.38 -0.0007 -0.30 -0.0057 -0.61 -0.0071 -0.31 0.0040 0.09

d dgm dsales weighted 0.0006 0.49 0.0009 0.17 -0.0031 -0.21 -0.0207 -0.58 -0.0002 -0.12 -0.0016 -0.28 -0.0058 -0.34 -0.0036 -0.10

d ceq weighted -0.0010 -0.43 -0.0059 -0.57 -0.0098 -0.30 -0.0227 -0.38 -0.0016 -0.68 -0.0069 -0.68 -0.0076 -0.28 0.0041 0.08

roc weighted -0.0033 -1.31 -0.0153 -1.29 -0.0340 -1.13 -0.0881 -1.32 -0.0032 -1.18 -0.0143 -1.13 -0.0304 -0.88 -0.0822 -1.18

aoa weighted -0.0005 -0.25 -0.0017 -0.21 -0.0049 -0.24 -0.0016 -0.03 -0.0007 -0.33 -0.0011 -0.14 -0.0041 -0.20 0.0004 0.01

roic weighted 0.0001 0.05 -0.0019 -0.22 -0.0073 -0.27 -0.0088 -0.11 0.0018 0.74 0.0052 0.56 0.0122 0.46 0.0375 0.51

ipm weighted -0.0009 -0.50 -0.0045 -0.59 -0.0084 -0.37 -0.0125 -0.27 -0.0014 -0.75 -0.0060 -0.73 -0.0096 -0.36 -0.0158 -0.23
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sat weighted 0.0012 0.88 0.0033 0.65 0.0045 0.36 0.0034 0.11 0.0004 0.26 0.0016 0.22 0.0048 0.26 0.0089 0.25

q weighted -0.0020 -0.74 -0.0101 -0.80 -0.0245 -0.64 -0.0643 -0.69 -0.0017 -0.65 -0.0074 -0.62 -0.0155 -0.49 -0.0443 -0.49

spread mean weighted -0.0002 -0.07 -0.0009 -0.07 -0.0036 -0.13 -0.0069 -0.11 -0.0016 -0.61 -0.0054 -0.45 -0.0110 -0.40 -0.0252 -0.41

rel to high price weighted 0.0123 6.39 0.0388 5.63 0.0776 5.23 0.1556 4.95 0.0135 5.32 0.0439 4.64 0.0914 4.44 0.1809 4.50

cum return 1 0 weighted 0.0116 10.90 0.0339 10.04 0.0683 9.54 0.1434 9.54 0.0140 8.67 0.0408 8.95 0.0835 8.38 0.1848 8.01

cum return 12 7 weighted 0.0089 3.75 0.0253 2.86 0.0473 2.11 0.0806 2.37 0.0087 3.45 0.0264 2.83 0.0521 2.20 0.0958 2.23

cum return 12 2 weighted 0.0147 5.74 0.0433 4.32 0.0857 3.60 0.1652 3.26 0.0146 5.05 0.0436 3.71 0.0878 3.07 0.1748 2.68

cum return 36 13 weighted 0.0028 1.05 0.0043 0.42 0.0067 0.23 0.0103 0.17 0.0030 1.11 0.0060 0.55 0.0101 0.36 0.0233 0.36

cum return 6 2 weighted 0.0148 7.04 0.0446 5.72 0.0934 5.71 0.1839 5.42 0.0152 6.46 0.0469 5.15 0.0988 5.17 0.1992 4.95

beta weighted -0.0036 -1.34 -0.0131 -1.11 -0.0277 -0.88 -0.0633 -1.09 -0.0037 -1.22 -0.0135 -0.97 -0.0268 -0.62 -0.0671 -0.82

dto weighted 0.0011 1.50 0.0023 0.90 0.0058 1.14 0.0144 1.52 0.0017 1.90 0.0051 1.55 0.0153 2.18 0.0370 2.86

suv weighted 0.0010 1.52 0.0019 0.84 0.0047 0.99 0.0099 0.79 0.0013 1.26 0.0034 1.17 0.0093 1.52 0.0259 1.56

ret max weighted 0.0001 0.06 -0.0013 -0.15 -0.0015 -0.08 0.0029 0.07 -0.0008 -0.37 -0.0052 -0.67 -0.0095 -0.55 -0.0109 -0.27

beta daily weighted 0.0006 0.20 -0.0008 -0.09 -0.0035 -0.18 -0.0132 -0.32 0.0006 0.19 -0.0014 -0.15 -0.0009 -0.05 0.0001 0.00

idio vol weighted -0.0008 -0.35 -0.0042 -0.52 -0.0084 -0.42 -0.0124 -0.29 -0.0025 -1.33 -0.0108 -1.52 -0.0212 -1.22 -0.0354 -0.98

total vol weighted -0.0005 -0.19 -0.0038 -0.43 -0.0077 -0.35 -0.0140 -0.30 -0.0020 -0.88 -0.0104 -1.21 -0.0199 -0.98 -0.0338 -0.83

std volume weighted -0.0027 -1.02 -0.0097 -0.87 -0.0172 -0.73 -0.0350 -0.69 -0.0032 -1.13 -0.0099 -0.94 -0.0145 -0.55 -0.0296 -0.48

std turn weighted 0.0001 0.04 -0.0021 -0.23 -0.0056 -0.26 -0.0045 -0.09 -0.0007 -0.26 -0.0064 -0.71 -0.0130 -0.61 -0.0170 -0.38

lme adj weighted -0.0014 -0.72 -0.0049 -0.55 -0.0087 -0.42 -0.0190 -0.44 -0.0021 -0.98 -0.0076 -0.83 -0.0142 -0.63 -0.0341 -0.76

beme adj weighted 0.0007 0.32 0.0078 0.86 0.0186 0.73 0.0457 0.75 -0.0007 -0.28 0.0026 0.26 0.0049 0.20 0.0270 0.43

pm adj weighted -0.0018 -0.61 -0.0086 -0.67 -0.0182 -0.50 -0.0271 -0.42 -0.0005 -0.13 -0.0030 -0.19 -0.0042 -0.11 -0.0092 -0.10

at adj weighted 0.0014 0.88 0.0057 0.97 0.0131 1.01 0.0261 0.80 -0.0001 -0.03 0.0019 0.25 0.0093 0.50 0.0260 0.55

family ret 1 0 0.0084 9.97 0.0252 12.57 0.0534 10.91 0.1109 9.15 0.0105 8.31 0.0308 9.57 0.0661 8.85 0.1374 8.39

family ret 2 1 0.0120 11.78 0.0364 13.11 0.0762 10.71 0.1558 9.66 0.0149 12.46 0.0461 11.16 0.0919 10.04 0.1848 8.59

family ret 12 2 0.0209 14.81 0.0667 11.22 0.1324 8.97 0.2635 8.83 0.0274 14.77 0.0854 12.22 0.1675 9.85 0.3388 9.24

family excess ret 1 0 0.0084 9.97 0.0252 12.57 0.0534 10.91 0.1109 9.15 0.0105 8.31 0.0308 9.57 0.0661 8.85 0.1374 8.39

family excess ret 2 1 0.0120 11.78 0.0364 13.11 0.0762 10.71 0.1558 9.66 0.0149 12.46 0.0461 11.16 0.0919 10.04 0.1848 8.59

family excess ret 12 2 0.0209 14.81 0.0667 11.22 0.1324 8.97 0.2635 8.83 0.0274 14.77 0.0854 12.22 0.1675 9.85 0.3388 9.24

family MAR 1 0 0.0084 9.97 0.0252 12.57 0.0534 10.91 0.1109 9.15 0.0105 8.31 0.0308 9.57 0.0661 8.85 0.1374 8.39

family MAR 2 1 0.0119 12.21 0.0358 13.61 0.0754 11.25 0.1553 10.06 0.0148 12.39 0.0461 11.08 0.0917 10.08 0.1850 8.74

family MAR 12 2 0.0208 14.46 0.0664 10.84 0.1316 8.85 0.2620 8.42 0.0273 14.73 0.0848 12.11 0.1662 9.83 0.3366 9.11

family CAPM 1 0 0.0091 9.36 0.0270 11.12 0.0560 10.20 0.1175 8.73 0.0120 9.50 0.0340 9.51 0.0724 9.27 0.1528 8.43

family CAPM 2 1 0.0117 10.96 0.0358 11.29 0.0742 10.32 0.1549 9.74 0.0151 11.33 0.0461 9.92 0.0912 9.05 0.1867 8.47

family CAPM 12 2 0.0207 15.16 0.0630 12.82 0.1245 11.58 0.2373 11.63 0.0272 14.94 0.0820 11.72 0.1617 10.47 0.3254 9.83
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family 3F alpha 1 0 0.0078 12.32 0.0230 14.82 0.0481 13.83 0.1002 11.61 0.0111 10.32 0.0314 12.64 0.0648 11.49 0.1396 9.86

family 3F alpha 2 1 0.0110 12.82 0.0319 12.99 0.0667 11.73 0.1361 9.77 0.0150 12.82 0.0426 11.35 0.0860 11.65 0.1796 9.13

family 3F alpha 12 2 0.0194 16.03 0.0587 13.73 0.1139 12.45 0.2098 9.49 0.0262 16.99 0.0782 14.34 0.1516 11.86 0.2923 8.83

family 4F alpha 1 0 0.0072 9.90 0.0207 11.52 0.0435 11.58 0.0903 9.27 0.0101 8.62 0.0290 10.39 0.0602 10.12 0.1270 8.72

family 4F alpha 2 1 0.0103 12.55 0.0294 12.20 0.0603 10.93 0.1250 9.52 0.0145 12.02 0.0402 11.03 0.0811 10.31 0.1709 8.26

family 4F alpha 12 2 0.0191 15.06 0.0576 13.35 0.1137 12.04 0.2256 11.07 0.0263 16.00 0.0775 14.08 0.1516 12.21 0.3077 10.60

family no 0.0012 0.90 0.0087 1.50 0.0208 1.31 0.0567 1.50 0.0010 0.73 0.0081 1.39 0.0194 1.23 0.0520 1.37

family log real tna 0.0040 2.07 0.0192 2.22 0.0453 1.89 0.1192 1.72 0.0041 1.92 0.0134 1.49 0.0243 0.75 0.0469 0.36

family flow lag1 0.0271 20.22 0.0843 19.04 0.1638 16.85 0.3103 14.98 0.0426 11.11 0.1296 12.29 0.2507 11.70 0.4939 9.82

family flow lag2 lag1 0.0265 17.10 0.0821 18.68 0.1585 16.29 0.3006 14.71 0.0393 13.94 0.1204 13.15 0.2364 10.52 0.4751 8.49

family flow lag12 lag2 0.0280 15.92 0.0821 14.22 0.1619 11.23 0.3184 9.79 0.0398 8.14 0.1073 9.49 0.2121 6.86 0.4111 5.71

family age -0.0011 -0.53 -0.0009 -0.12 -0.0009 -0.04 0.0085 0.12 -0.0014 -0.74 -0.0014 -0.22 -0.0031 -0.18 -0.0020 -0.04

This table shows the result of univariate analysis based on each of the 110 characteristics. We sort mutual funds into deciles based on the value of each characteristic at month t and compute equal- and value-weighted averages of fund

flows at month t + 1 for each decile. Then we conduct a t-test of the difference between the bottom and top decile using Newey-West standard errors with 12 lags.
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Table 5: Summary statistics of Out of Sample R-sqaured

Mean Min Max Proportion of negative R-sq
BRT flow 1month 0.0623 -0.3198 0.2968 22.46%
BRT flow 3month 0.2721 -0.1787 0.5416 1.78%
BRT flow 6month 0.3184 -0.0563 0.5736 0.90%

BRT flow 12month 0.3128 -0.0938 0.5716 0.90%
BRT v flow 1month 0.1511 -0.0241 0.3369 1.80%
BRT v flow 3month 0.2143 -0.0927 0.4540 0.60%
BRT v flow 6month 0.2343 -0.1015 0.4863 0.30%
BRT v flow 12month 0.2158 0.0406 0.4448 0%

OLS flow 1month -0.2338 -0.8608 0.1700 95.51%
OLS flow 3month -0.1857 -0.7846 0.4793 87.13%
OLS flow 6month -0.1733 -0.8621 0.6490 85.03%

OLS flow 12month -0.1694 -0.8285 0.7110 85.03%
This table reports the summary statistics of out-of-sample R-squared for each model we use. “BRT v” indicates the BRT model
using the validation sample to set the optimal number of boosting iterations
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Table 6: Mutual Fund Portfolios Using Predicted Values with Restricted Predictor Space Sorted

Panel A: Equal Weighted
All Predictor 90% Predictor 75% Predictor 50% Predictor

Decile Excess Ret t-stat Capm Alpha t-stat Excess Ret t-stat Capm Alpha t-stat Excess Ret t-stat Capm Alpha t-stat Excess Ret t-stat Capm Alpha t-stat
Bottom 0.0042 1.49 -0.0021 -1.90 0.0044 1.56 -0.0018 -1.71 0.0046 1.64 -0.0019 -1.81 0.0047 1.68 -0.0019 -1.91

2 0.0055 2.14 -0.0010 -1.20 0.0056 2.15 -0.0010 -1.13 0.0057 2.19 -0.0011 -1.37 0.0057 2.17 -0.0010 -1.33
3 0.0059 2.28 -0.0004 -0.63 0.0059 2.30 -0.0004 -0.57 0.0060 2.36 -0.0007 -1.05 0.0060 2.31 -0.0007 -1.13
4 0.0064 2.51 -0.0003 -0.56 0.0065 2.57 0.0000 -0.03 0.0063 2.46 -0.0001 -0.25 0.0065 2.56 0.0000 0.02
5 0.0068 2.70 0.0000 0.03 0.0067 2.67 0.0001 0.11 0.0066 2.67 -0.0001 -0.15 0.0066 2.64 0.0001 0.10
6 0.0069 2.76 0.0002 0.48 0.0068 2.71 0.0001 0.22 0.0070 2.84 0.0003 0.61 0.0071 2.84 0.0005 0.75
7 0.0074 3.00 0.0006 1.01 0.0075 3.11 0.0007 1.16 0.0072 2.94 0.0008 1.35 0.0073 2.95 0.0006 0.94
8 0.0078 3.09 0.0011 1.46 0.0077 3.09 0.0010 1.24 0.0077 3.07 0.0011 1.54 0.0078 3.12 0.0009 1.11
9 0.0089 3.49 0.0020 1.94 0.0087 3.38 0.0017 1.71 0.0087 3.36 0.0016 1.62 0.0084 3.32 0.0018 1.75

Top 0.0099 3.54 0.0029 2.02 0.0097 3.50 0.0027 1.96 0.0097 3.45 0.0029 2.11 0.0093 3.42 0.0027 1.92
Top-Bottom 0.0057 3.03 0.0050 2.69 0.0053 2.97 0.0046 2.57 0.0051 2.86 0.0048 2.91 0.0046 2.50 0.0046 2.62

Panel B: Value Weighted
All Predictor 90% Predictor 75% Predictor 50% Predictor

Decile Excess Ret t-stat Capm Alpha t-stat Excess Ret t-stat Capm Alpha t-stat Excess Ret t-stat Capm Alpha t-stat Excess Ret t-stat Capm Alpha t-stat
Bottom 0.0045 1.60 -0.0017 -1.65 0.0047 1.69 -0.0016 -1.59 0.0048 1.72 -0.0017 -1.67 0.0049 1.77 -0.0017 -1.81

2 0.0055 2.13 -0.0010 -1.20 0.0057 2.18 -0.0009 -1.08 0.0057 2.20 -0.0011 -1.40 0.0058 2.21 -0.0009 -1.33
3 0.0058 2.27 -0.0003 -0.47 0.0060 2.34 -0.0002 -0.37 0.0061 2.39 -0.0005 -0.71 0.0061 2.34 -0.0006 -0.94
4 0.0065 2.58 -0.0003 -0.50 0.0065 2.58 0.0001 0.25 0.0062 2.43 0.0000 -0.06 0.0066 2.61 0.0001 0.13
5 0.0068 2.73 0.0001 0.27 0.0066 2.67 0.0000 0.06 0.0066 2.66 -0.0001 -0.19 0.0067 2.72 0.0000 0.04
6 0.0070 2.83 0.0003 0.63 0.0069 2.78 0.0001 0.26 0.0071 2.86 0.0003 0.64 0.0072 2.86 0.0004 0.74
7 0.0075 3.06 0.0005 0.85 0.0076 3.15 0.0008 1.24 0.0073 2.97 0.0009 1.39 0.0074 2.99 0.0007 1.00
8 0.0078 3.09 0.0012 1.44 0.0079 3.16 0.0010 1.21 0.0077 3.09 0.0013 1.67 0.0078 3.15 0.0010 1.25
9 0.0092 3.57 0.0023 2.13 0.0088 3.37 0.0018 1.66 0.0089 3.46 0.0018 1.71 0.0087 3.39 0.0019 1.76

Top 0.0103 3.57 0.0033 2.08 0.0099 3.45 0.0031 1.89 0.0099 3.39 0.0032 2.00 0.0096 3.40 0.0031 2.01
Top-Bottom 0.0058 2.88 0.0050 2.49 0.0052 2.72 0.0047 2.35 0.0052 2.60 0.0049 2.62 0.0047 2.45 0.0047 2.58

This table shows average excess returns and CAPM alphas for each portfolio sorted using BRT predicted values. Panel A and B present equal- and value-weighted average returns, respectively. We
restrict the predictor space to the characteristics that are important to predict 3-month future flows from the highest where the sum of importance is 90%, 75%, and 50%. “Top-Bottom” indicates the
long-short portfolio, together with t-statistics using Newey West standard errors with 12 lags.
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Figure 1: Relative Importance Plot to Predict Flows in the BRT model

(a) 1-month flow (b) 3-month flow
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(c) 6-month flow (d) 12-month flow

This figure shows the relative importance measure when predicting 1, 3, 6, and 12-
month flows in the BRT model. The y axis denotes 110 characteristics, and the x axis
denotes each regressor’s relative importance measure. The sum of relative importance
measure across all covariates is 1.
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Figure 2: Relative Importance Plot to Predict Excess Returns in the BRT model

(a) All Predictor (b) 50% Predictor

This figure shows the relative importance measure when predicting excess returns
using either all predictors or predictors that are important to predict 3-month future
flows from the highest where the sum of importance is 50% in the BRT model. The
y axis denotes 110 characteristics, and the x axis denotes each regressor’s relative im-
portance measure.
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Figure 3: Relative Importance Plot to Predict CAPM Alphas in the BRT model

(a) All Predictor (b) 50% Predictor

This figure shows the relative importance measure when predicting CAPM alphas
using either all predictors or predictors that are important to predict 3-month future
flows from the highest where the sum of importance is 50% in the BRT model. The
y axis denotes 110 characteristics, and the x axis denotes each regressor’s relative im-
portance measure.
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Figure 4: Out of Sample R-squared over Time

(a) 1-month flow (b) 3-month flow

(c) 6-month flow (d) 12-month flow

This figure presents the time-series plot of the out-of-sample R-squared in the 1-month
rolling window estimation predicting 1, 3, 6, and 12-month flows. The red line indi-
cates the BRT without the validation sample, the green indicates the BRT with the val-
idation sample, and the blue is the OLS. The y axis denotes out-of-sample R-squared,
and the x axis denotes the date.
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